LCD Data Sheet

LJ64H034 EL Display Unit

FEATURES

Display Diagonal: 4.7"Display Format: 320 × 240

• Overall Dimensions:

147 (W) \times 112 (H) \times 25 (D) mm

Active Area: 96 (W) × 72 (H) mm

• Dot Pitch: .30 (W) × .30 (H) mm

DESCRIPTION

The SHARP EL display unit consists of a thin film EL panel, high voltage MOS-ICs for panel driving, and a display control circuit. By supplying eleven input signals of CMOS level and two DC power supplies of +5 V and +12 V, arbitrary graphs and characters can be displayed.

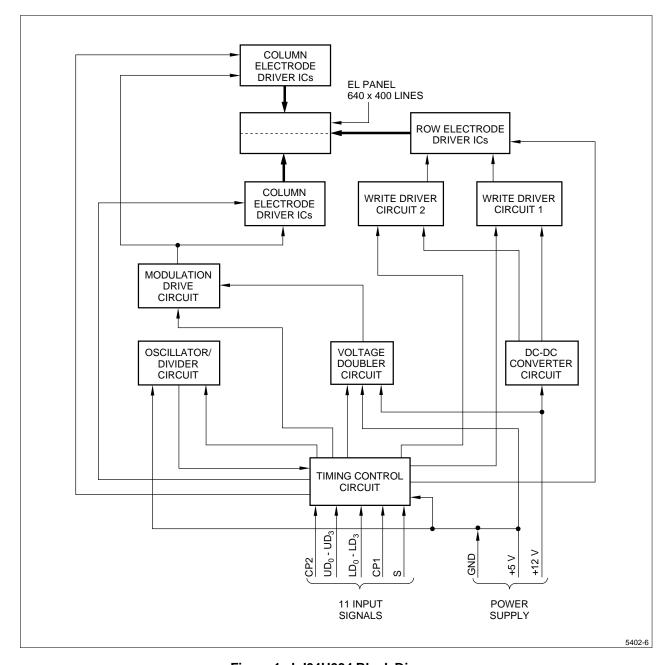


Figure 1. LJ64H034 Block Diagram

MECHANICAL SPECIFICATIONS

PARAMETER		SPECIFICATIONS	UNIT	NOTES
Outline Dimensions	Main Unit	246 (W) × 175 (H) × 18.0 (D) (20.0)	mm	1
Outline Dimensions	DC-DC Conv.	158 (W) × 30 (H) × 17.0 (D)	- mm	
Number of Matrix Electrodes		640 (W) × 400 (H)	_	1
Effective Display Area		191.9 (W) × 119.9 (H)	mm	-
Dot Pitch		0.3 (W) × 0.3 (H)	mm	1
Dot Pitch Ratio		1 (W) ÷ 1 (H)	_	1
Dot Size		0.22 (W) × 0.22 (H)	mm	1
Weight	Main Unit	565 (600)		1
vveigni	DC-DC Conv.	35	- g	

NOTE:

1. With mounted DC-DC converter board. Details of outline dimensions are shown in the Outline Dimensions diagram.

ABSOLUTE MAXIMUM RATINGS ($t_A = 25^{\circ}C$)

SYMBOL	PARAMETER	RATING	UNIT
V _{IH}	Interface Signal (Logic 'H')	V _L +0.5	
V_{IL}	Interface Signal (Logic 'L')	-0.5	V
V _L	Supply Voltage (Logic)	+7	-
V _D	Supply Voltage (Panel Drive)	+14	

ENVIRONMENTAL CONDITIONS

PARAMETER	Tstg		Topr		CONDITION	NOTES				
TANAMETER	MIN	MAX	MIN MAX		CONDITION					
Ambient Temperature	-40°C	+80°C	−5°C +55°C		_	1				
Humidity			_	No condensation	2					
Vibration	_	-	_		_		No operating	3 (Tstg only)		
Shock	_		_		_		_		No operating	4 (Tstg only)

NOTES:

- 1. Survival: -20°C to $+65^{\circ}\text{C}$. No permanent damage will occur.
- 2. $t_A \le 40^{\circ}C$ 95% RH maximum. $t_A > 40^{\circ}C$. . . Absolute humidity shall be less than $t_A = 40^{\circ}C/95\%$ RH.
- 5 to 55 Hz Frequency range: Sweep time: 15 minutes each axis. Dwell at resonance: 10 minutes each resonance. Peak-to-peak amplitude: 3.17 mm over 5 to 10 Hz range, 1.52 mm over 10 to 25 Hz range, 0.38 mm over 25 to 55 Hz range.
 - 55 to 500 Hz Frequency range: Sweep time: 120 minutes each axis. Dwell at resonance: 30 minutes each resonance. Peak-to-peak amplitude: 30 m/s² peak acceleration.
- 4. Acceleration: 491 m/s² (50g). Pulse width: 11 ms. 3 times for each direction of $\pm X/\pm Y/\pm Z$. (9.806 65 m/s² = 1G)

Page 2 LCD Data Sheet

ELECTRICAL CHARACTERISTICS (t_A = 25°C, Frame Frequency = 120 Hz)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	NOTES
V _L	Supply Voltage (Logic)	+4.75	+5.0	+5.25	V	_
IL	Supply Current (Logic, $V_L = +5 \text{ V}$)	30	_	300	mA	_
V_{D}	Supply Voltage (Panel Drive)	+11.4	+12.0	+12.6	V	_
I _D	Supply Current (Panel Drive, V _D = +12 V)	1	_	1300	mA	1
P_T	Total Power ($V_L = +5 \text{ V}, V_D = +12 \text{ V}$)	_	_	_	W	_

NOTE:

1. 10 mA in condition with no signals nor V_L supplying.

OPTICAL CHARACTERISTICS (t_A = 25°C Frame Frequency = 120 Hz)

SYMBOL	PARAMETER	CONDITION	MIN	TYP	MAX	UNIT	NOTES
L _{ON}	Luminance	All Dots Lit	137 (40)	200 (60)	1	cd/m ² (f-L)	
L _{OFF}	OFF Luminance	All Dots Turned Off	_	_	3.4 (1.0)	cd/m ² (f-L)	1
Δ L _{DIS}	Luminance Distribution	All Dots Lit	_	_	35	%	
_	Fill Factor	_	_	0.54	-	_	2
ΔL _{SD}	Shadowing Characteristics	Fixed Pattern	_	_	ı	%	3
_	Viewing Angle	_	_	160	1	degrees	_

NOTES:

1. Average luminance measured at the dots in circular windows (R₁ to R₅) shown in Figure 2. (Circular window diameter: Ø13 mm). The following formula defines the luminance distribution:

$$\Delta L_{DIS} = \left(1 - \frac{L_{MIN}}{L_{MAX}}\right) \times 100 \,(\%)$$

where L_{MAX} is the maximum luminance and L_{MIN} is the minimum luminance taken at the five locations shown in Figure 2.

- 2. The ratio of the emission area to the display area. SHARP's Electro-Luminescent has comparatively high fill factor; therefore, the visibility of display is excellent.
- 3. Shadowing characteristics means the variation of luminance according to the number of dots lit on a scanning line. Thanks to the addition of the shadowing compensation circuit, the display quality of SHARP's Electro-Luminescent is improved. The following formula defines the shadowing characteristics:

$$\Delta L_{SD} = \left(\frac{L_N}{L_L} - 1\right) \times 100 \,(\%)$$

where L_L is the luminance at R₆, L_N at R₇.

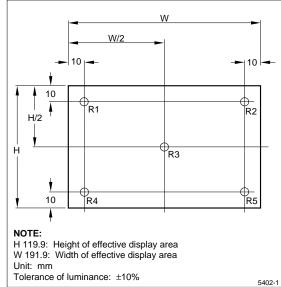


Figure 3.

Н

W

LIT AREA

NON-LIT AREA

0.65 W - 0.70 W

OR6

OR7

5402-2

Figure 2.

TIMING CHARACTERISTICS

Input Signals

This unit is driven by line-at-a-time scanning method with following 11 CMOS level input signals.

SYMBOL	PARAMETER		DESCRIPTION					
CP2	Data Input Clock Signal	Clock signal for inputting th	e display data into the EL unit.					
UD ₀ -UD ₃	Display Data	Data signal for the upper part of display.	The signals are sampled at every falling edge of the data input clock signal.					
LD ₀ -LD ₃	Signal	Data signal for the lower part of display.	The display is 'ON' while the logic is 'H' and 'OFF' while the logic is 'L.'					
CP1	Input Data Latch Signal	This signal controls the 'tim of the data side shift registe	ning of line-at-a-time scanning' and the 'latch timing er on falling edge.'					
S	Scan Start-Up Signal	This signal controls frame frequency. The contents of the display data signal are displayed on the first line by combination with this signal.						

Timing Characteristics of Input Signals ($t_A = 25^{\circ}C$)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	NOTES
1/t _{FRM}	Frame Frequency	60	1	120	Hz	_
t _{CP2}	CP2 Clock Cycle	182	_	_	ns	_
t _{CWH}	High Level Clock Width	60	1	1	ns	_
t _{CWL}	Low Level Clock Width	60	1	ı	ns	_
t _{CP1}	CP1 Clock Cycle	40	ı	-	μs	_
t _{LWH}	High Level Latch Clock Width	60	1	1	ns	_
t _{SU}	Data Setup Time	50	1	ı	ns	_
t _H	Data Hold Time	40	1	-	ns	_
t _{S21}	CP1 ↑ Clock Allowance Time from CP2 ↓	0	_	_	ns	_
t _{S12}	CP2 ↓ Clock Allowance Time from CP1 ↓	200	_	_	ns	_
t _R , t _F	Clock Rise/Fall Time	_	_	t _{RF}	ns	1

NOTE:

The vertical blanking time (T_{FRM} - $T_{CP1} \times 200$) shall be minimized to avoid the flickering lines around the center of the display. (Around 200th and 201st vertical line).

Page 4 LCD Data Sheet

^{1.} $t_{RF} = (t_{CP2} - t_{CWH} - t_{CWL})/2 \le 30 \text{ ns}$

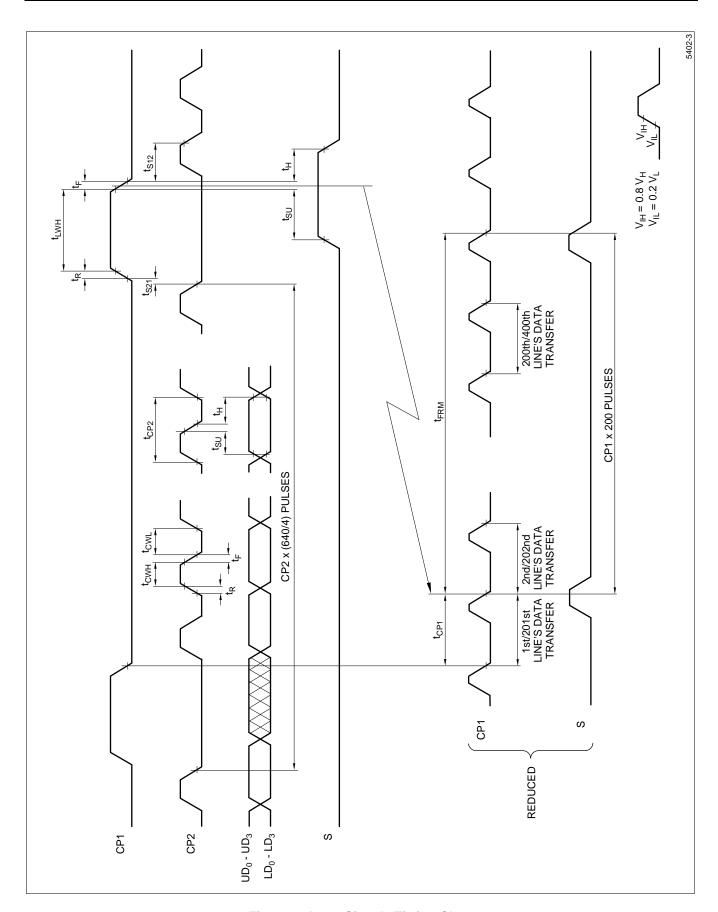


Figure 4. Input Signals Timing Chart

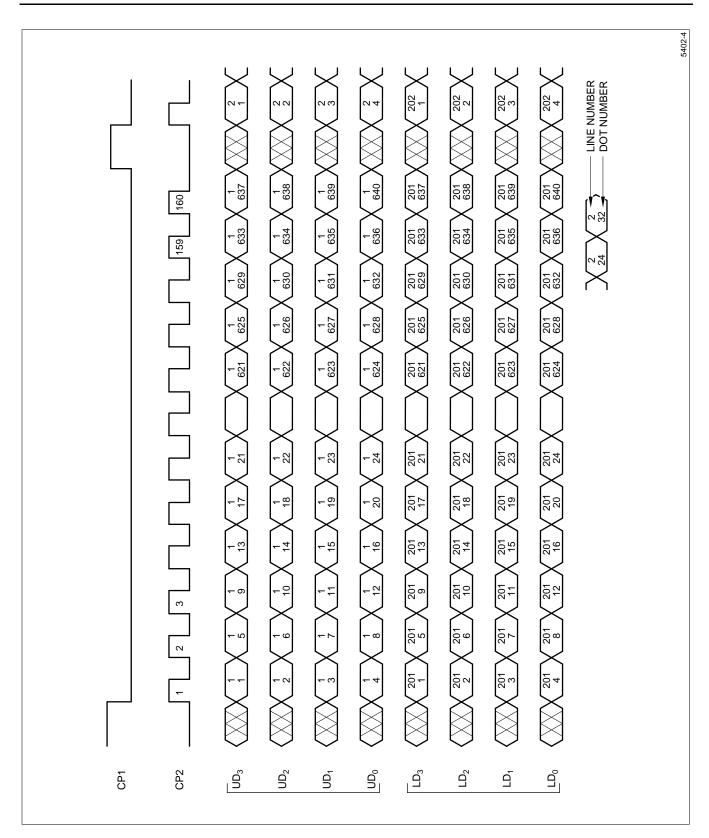


Figure 5. Data Transmission Timing

Page 6 LCD Data Sheet

Transmission Data and Relative Position on Panel

DOI	\rightarrow

LINE \downarrow		1	2	3	639	640
	1	1 – 1	1 – 2	1 – 3	1 – 639	1 – 640
	2	2 – 1	2 – 2	2 – 3	2 – 639	2 – 640
	3	3 – 1	3 – 2	3 – 3	3 – 639	3 – 640
UD	•					
	•				 	
	•					
	199	199 – 1	199 – 2	199 – 3	 199 – 639	199 – 640
	200	200 – 1	200 – 2	200 – 3	 200 – 639	200 – 640
	201	201 – 1	201 – 2	201 – 3	 201 – 639	201 – 640
	202	202 – 1	202 – 2	202 – 3	202 – 639	202 – 640
	203				203 – 639	203 – 640
LD	•					
	•					
	•					
	399	399 – 1	399 – 2	399 – 3	399 – 639	399 – 640
	400	400 – 1	400 – 2	400 – 3	400 – 639	400 – 640

INTERFACE SIGNALS AND POWER SUPPLY CONNECTORS

Assignment of Pins of Connector CN5

NUMBER	SIGNAL	NUMBER	SIGNAL
1	UD1	2	UD0
3	UD3	4	UD2
5	LD1	6	LD0
7	LD3	8	LD2
9	CP2	10	GND
11	CP1	12	GND
13	S	14	GND
15	GND	16	GND
17	+5 V	18	+5 V
19	+12 V	20	+12 V

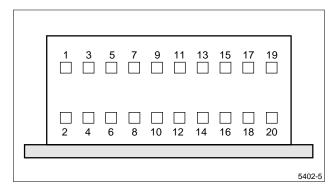


Figure 6. Arrangement of Pins of Connector CN5

Connectors

DESCRIPTION	MODEL NUMBER	MANUFACTURER	
Unit-Side Pin Header	DF11-20DP-2DS or equivalents	Hirose Electric Co.	
Fitting Socket (Crimp Contact)	DF120-1DS-2C or equivalents (DF11-2428SC)		

NOTES:

- 1. The length of the cable shall not exceed 50 cm.
- 2. This unit is not supplied with the fitting socket and the cable.

Page 8 LCD Data Sheet

DC/DC CONVERTER BOARD

The DC/DC converter board of the EL unit is detachable for lower profile (20 - 18 mm). The detachment can be made with the screws (A) shown in the Outline Dimensions diagram.

Precautions For Detaching DC/DC Converter Board

- The unit shall not be operated during the procedure with due care of ESD.
- The DC/DC converter board is hazardous with its output +250 DC and -200 VDC. Handle with care when the board is installed into host system.

- The cable shown in Figure 7b is attached between the main controller board and DC/DC converter board (Figure 7a). If an extension is required, the total length of the extended cable shall be not longer than 200 mm.
- The output voltage of the DC/DC converter board is factory preset for the optimum value to match the individual panel characteristics. Make sure the coupling of the DC/DC converter board and its host EL unit is maintained.

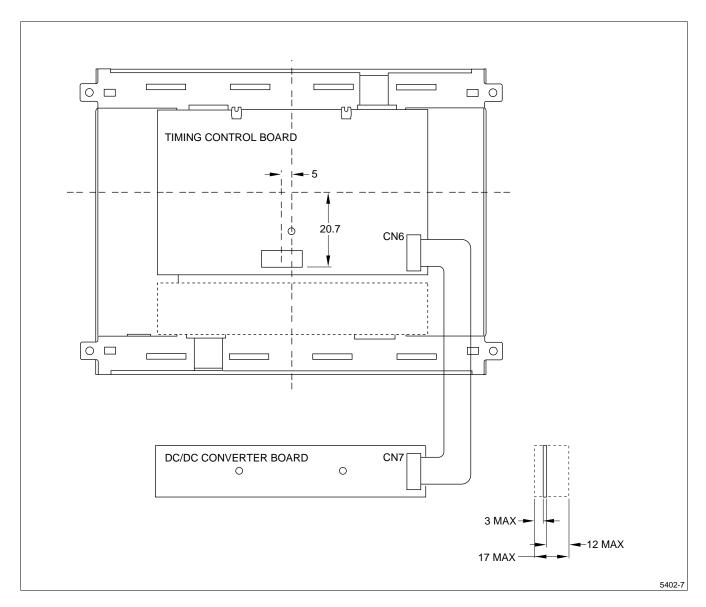


Figure 7. DC/DC Converter Board

HANDLING INSTRUCTIONS

- Handle the unit carefully to avoid ESD. The operator and surroundings must be protected against ESD. Hold the mounting arms of 4 corners of the unit when you handle it.
- Since the Electro-Luminescent panel is made of glass, care shall be taken to avoid breakage caused by dropping or bumping it.
- The display control board shall not be removed nor shall the unit be disassembled. ICs mounted on the unit shall never be touched by fingers/hands to prevent damage due to static electricity.

PRECAUTIONS

- The unit shall be operated within the rated operating conditions specified in this literature. When you mount the unit on your product, design your product to give the unit adequate ventilation.
- Operation of the unit at high temperature with high humidity shall be strictly avoided. Dew on the connector or on the circuits will cause malfunction, which can lead to damage to the unit.
- The display control board on the rear side of the unit shall never be touched while in operation. It generates AC pulse of approximately 200 V.
- To avoid the image retention caused by the luminance change due to time lapse, and to increase the panel life, please design to avoid displaying a fixed pattern for a prolonged time and try to use all parts of the viewing area evenly. Also, it is recommended that the unit be used at the lowest ambient temperature possible because temperature contributes to acceleration of the luminance change due to time lapse.

SCHEME OF THE SIGNAL INPUT BLOCK

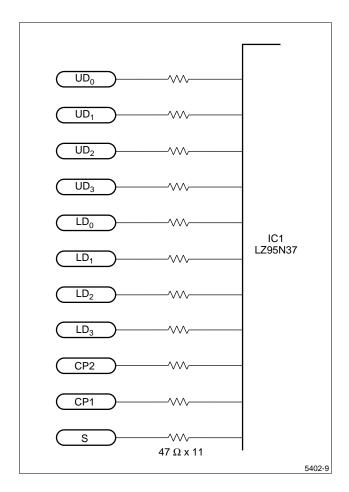


Figure 8. Signal Input Block

Page 10 LCD Data Sheet

POWER SUPPLY INPUT CIRCUIT

Over Current Protection

This unit uses fuses in the power supply input circuit to protect against over current in the internal circuit. Fuse may may also blow if the specifications are not adhered to or in the event of a short circuit.

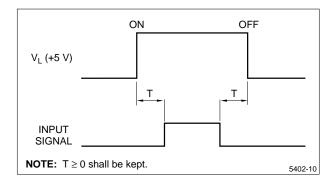


Figure 9. Power On/Off Sequence

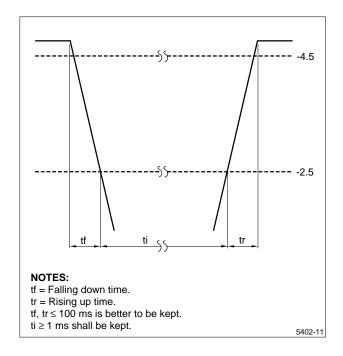
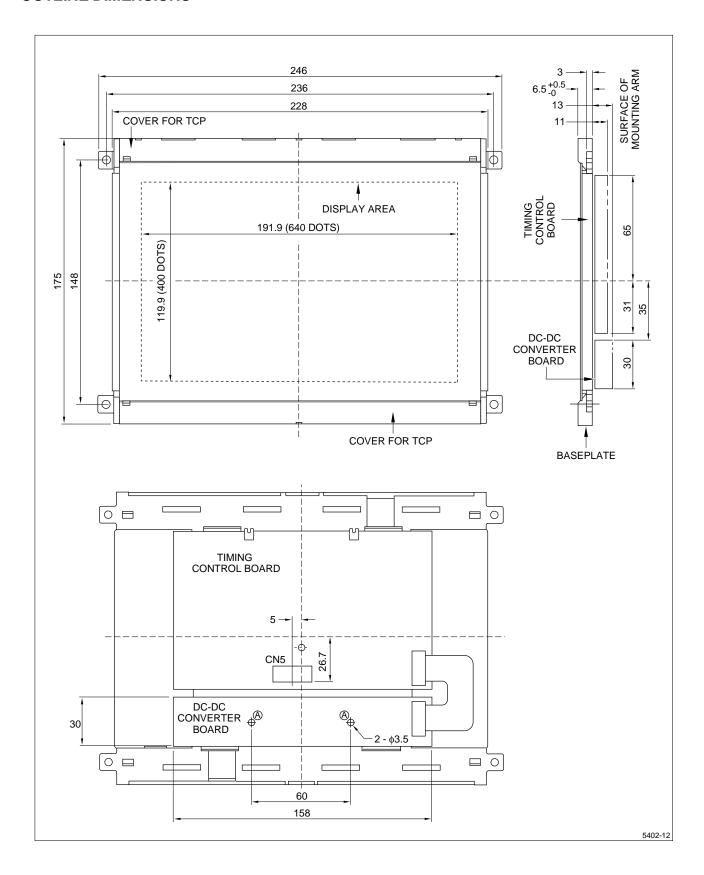


Figure 10. Rise Time/Fall Time


Fuse Specifications

PART NUMBER	MODEL NUMBER	MELT TYPE	MANUFACTURER	AUTHORIZATION STANDARD	NOTE	
F 1	CCED 4 5002	Oviola Molt				
F 2	SSFR AF003 or equivalents	Quick Melt	Down	S.O.C.	UL, CSA	1
F3	or equivalents	Down				

NOTE:

1. Fuses are not open in the case current capacity of power supply is small. Fuses are open by surge current in case current capacity of power supply is big or supply power to the unit uses relays. In consequence, please thoroughly investigate the unit.

OUTLINE DIMENSIONS

Page 12 LCD Data Sheet